
Operating Systems 2016/17
Assignment 9

Prof. Dr. Frank Bellosa
Dipl.-Inform. Marc Rittinghaus

Submission Deadline: Monday, January 9th, 2017 – 23:59

A new assignment will be published every week, right after the last one was due. It
must be completed before its submission deadline.

The assignments must be filled out online in ILIAS. Handwritten solutions are no
longer accepted. You will find the online version for each assignment in your tutorial’s
directory. P-Questions are programming assignments. Download the provided tem-
plate from ILIAS. Do not fiddle with the compiler flags. Submission instructions can
be found on the first assignment.

In this assignment you will get familiar with segmentation-based address translation.

T-Question 9.1: Segmentation

a. What is the benefit of using virtual addresses instead of working directly on physi-
cal addresses? 1 T-pt

b. How does the MMU determine where the segment table is located in memory? 1 T-pt

c. Assume a system with 16-bit virtual addresses that supports four different seg-
ments, which uses the following segment table: 4 T-pt

Segment Number Base Limit
0 0x1000 0x15f3

1 0x43ab 0x0300

2 0x25f3 0x1000

3 0x8000 0x00FF

Complete the following table and explain briefly how you derived your solution
for each row in the table.

Virtual Address Segment Number Offset Valid? Physical Address
0xA019

1 0x0200

0xC0DE

yes 0x25f3

1



P-Question 9.1: MMU for Segmentation
Download the template p1 for this assignment from ILIAS. You may only modify
and upload the file mmu.c.

Consider a system that uses a segmentation-based 32 bit virtual to 32 bit physical
address translation. The MMU performs the translation for a virtual address by
interpreting the high 3 bits as index into a segment table and the remaining bits
as offset.

In this question you will implement the MMU in software.

a. Write a function that performs the translation from a virtual to a physical address.
Your implementation should fulfill the following requirements: 3 P-pt

• Splits the value pointed to by address into the segment index and offset.

• Performs a look up in the segment table table and, if the supplied address is
valid, calculates the physical address.

• On success, writes the physical address into the variable pointed to by address

and returns 0, -1 otherwise.

• Also returns -1 if the table is not configured.

int translateSegmentTable(uint32_t *address);

b. The MMU should be extended with a translation lookaside buffer (TLB), that keeps
up to TLB SIZE entries, each one representing an exact translation (e.g., virtual
address 0x0000ABCD→ physical address 0x00A6ABCD). The TLB should use the least-
recently-used (LRU) replacement strategy, based on a counter that is incremented
on every access to the TLB (e.g., adding new entries, performing a lookup, etc.).
Define the necessary data structures to represent the TLB and its entries and write
a function that clears the whole TLB. Hints: Since the TLB size is known at compile 1 P-pt
time, you can use static arrays where needed.

void flushTLB(void);

c. Write a function that adds a new translation to the cache. The function should
apply the LRU strategy to find and replace an entry if no free entries exist. Hints: 1 P-pt
The LRU strategy selects the entry as victim that has not been used for the longest
time.

void addToTLB(uint32_t virtual, uint32_t physical);

d. Write a function that performs a lookup for the supplied virtual address in the TLB.
On success, the function should pass the physical address by updating the value
pointed to by address and return 0. If a matching translation does not exist, the
function should return -1. Hints: Remember that the TLB uses the LRU strategy 1 P-pt
for replacement.

int translateTLB(uint32_t *address);

Total:
6T-pt
6P-pt

2


